

 A science – industry partnership to drive R&D and innovation

Motto: "you make it – we break it"

- Founded in 2001, phase 3 closes in 2011, phase 4 under preparation
- Evaluates state-of-the-art technologies in a very complex environment and improves them
- Test in a research environment today what will be used by industry tomorrow
- Training:
 - Young researchers
 - openlab student programme
 - Topical seminars & workshops
 - CERN School of Computing

PARTNERS

SIEMENS

Fundamental physics questions:

- Why do particles have mass?
 - Newton could not explain it and neither can we...
- What is 96% of the Universe made of?
 - We only know 4% of it!
- Why is there no antimatter left in the Universe?
 - Nature should be symmetrical
- What was matter like during the first second of the Universe's life, right after the "Big Bang"?
 - A journey towards the beginning of the Universe will gives us deeper insight

CERN has built the Large Hadron Collider (LHC), allowing us to look at microscopic big bangs to gain a better understanding of the fundamental laws of nature

CERN stands for 57 years of...

- fundamental research and discoveries
- technological innovation
- training and education
- bringing the world together

First meeting of the CFRN Council

1980 East meets West
Visit of a delegation from
Beijing
Wolfgang von Rüden, CERN

2008 Global Collaboration
The Large Hadron Collider involves
over 100 countries

CERN Governance

Distribution of all CERN Users by Nation of Institute on 6 January 2011

The Challenge: selection of 1 event in 10,000,000,000,000

CERN's tools

- The world's most powerful accelerator: LHC
 - A 27 km long tunnel filled with high-tech instruments
 - Equipped with thousands of superconducting magnets
 - Accelerates particles to energies never obtained before
 - Produces particle collisions creating microscopic "big bangs"
- Very large sophisticated detectors
 - Four experiments each the size of a cathedral
 - Hundred million measurement channels each
 - Data acquisition systems treating Petabytes per second
- Top level computing to distribute and analyse the data
 - A Computing Grid linking ~140 computer centres around the globe
 - Sufficient computing power, storage and networking to handle 15 Petabytes per year, making them available to thousands of physicists for analysis

The LHC between the airport and the Jura mountains

The Computing Challenge

- Search for extremely rare events a needle in huge hay stack
- Very high initial data rates up to 1 Petabyte per second
- Massive data reduction directly at the detectors
- After filtering, still 1-2 GB/second leading to over 15 PB/year, to be stored, distributed and analyzed
- Users are distributed all over the Globe
- Many institutes/universities/teams contribute with compute power and disk storage, but all do their own way

The Answer

- Nature was and is kind to us: trivial data parallelism allows us to use cheap commodity solutions, easily scalable!
- Introduced PCs to replace mainframes in the 90s
- We profited from Moore's law fully for many years
- Arrival of excellent networks allowed the creation of a global Grid infrastructure called the World-wide LHC Computing Grid (WLCG)
- Massive investment in software development from 2002-10
- World-wide Authentication & Authorization Infrastructure
- => It is up and running, serving science, but ... a next step is needed

Massive on-line data reduction

- Collision every 25 ns
- It takes 3 µs to make a selection, i.e. 40 new events arrive during this time
- Solution:
 - pipelined data
 - pipelined selection
- Dead-time-free operation

Tier 0 – Tier 1 – Tier 2

Computing technology used for physics

- High Throughput Computing, no High Performance Computing
- PC based commodity servers only, running Scientific Linux
- NAS disk storage & tape mass storage
- 10 Gb/s based backbone, aggregate data rate ~1 TB/s
- In-house developed computer centre management suite
- Community developed Grid software
- End-user developed physics applications and high-level data management
- Extensive use of databases to run accelerator & experiments
- Distributed operation

Capacity of CERN's data centre (Tier0)

- Compute Nodes:
 - 8'000 systems
 - 65'000 CPUs (cores)
- Disk storage:
 - 63 Petabyte
 - 63'000 disk drives
- Tape storage:
 - capacity: 45 Petabyte
 - in use: 37 Petabyte (added 17 PB in 2010)
 - slots: 66'000 slots in tape libraries (plus 10'000 for backups)
 - 70 drives T10'000B
 - growth: 25-30 PB/year
- Corresponds to ~15% of the total capacity in WLCG

Example ATLAS experiment:

~2900 physicists, 174 universities, 34 countries

After more than 20 years of planning, development and implementation...,

... the big moment

